Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xu-Dong Chen,^a Lin-Ping Zhang^b and Miao Du^a*

^aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Donghua University, Shanghai 200051, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.054 wR factor = 0.169 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-2-pyridyl ketone azine

In the crystal structure of the title compound, $C_{22}H_{16}N_6$, each molecule is disposed about a twofold axis perpendicular to the central N–N single bond. The two pyridyl rings bound to the same C atom make a dihedral angle of 73.40 (9)°. The linkage C–N–N–C torsion angle is –124.4 (2)°.

Comment

Di-2-pyridyl ketone azine, (I), has been long associated with the spectrometric determination of microamounts of metal ions such as Cu^{II} (Grases, Estela *et al.*, 1981), Au^{III} (Grases, Garcia-Sanchez & Valcarcel, 1981), Pd^{II} (Garcia Vargas & Valcarcel, 1978), Fe^{II} (Valcarcel *et al.*, 1975), Ni^{II} and Co^{II} (Valcarcel *et al.*, 1977). A recent investigation of the coordination chemistry of this potential multidentate ligand suggests that (I) forms a discrete tetranuclear complex, (II), with AgNO₃, while it decomposes on reaction with $Cu(NO_3)_2$ (Sumby & Steel, 2005). In the crystal structure of (II), there exist two discrete tetranuclear complexes within the asymmetric unit, each containing two molecules of ligand (I). As part of a further development of this project, we describe here the crystal structure of (I).

The title compound, (I), $C_{22}H_{16}N_6$, crystallizes in the monoclinic space group P2/n. The molecules of (I) are disposed about a twofold axis that is perpendicular to the central N—N single bond. Viewed along the twofold axis, all four pyridyl rings in the molecule are twisted in the same direction, showing a clockwise or anticlockwise configuration. Similar observations have also been reported in the tetra-nuclear silver(I) coordination complex (II). On the other hand, the flexible conformation of (I) makes it a potential hexadentate ligand capable of coordination *via* all its nitrogen donors (Sumby & Steel, 2005).

The geometry of the molecule of (I) differs from that of (II). The acute expression of the dihedral angle between the two pyridyl rings bonding to the same C atom is 73.40 (9)° in (I), while the corresponding values in (II) range from 66.3 to 81.3° , with an average of 72.1° (Sumby & Steel, 2005). For the free

Received 9 December 2005 Accepted 13 December 2005 Online 21 December 2005

© 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved

molecule of (I), the C–N–N–C torsion angle is -124.4 (2)°, while the four ligand molecules in (II) have values of -138.0 (5), -149.4 (5), 138.3 (5) and 155.5 (5)°, respectively. The N–N bond length at 1.371 (4) Å for the molecule in (I) is also significantly shorter than those in (II), being 1.399, 1.406, 1.409 and 1.380 Å. These differences indicate that the ligand molecule (I) takes a more open conformation in its silver(I) coordination complex (II). Further investigation of the crystal packing of (I) indicates that no significant intermolecular interactions, such as hydrogen-bonding and π – π stacking, exist in this structure.

Experimental

Compound (I) was prepared according to the literature procedure (Sumby & Steel, 2005). Single crystals suitable for X-ray diffraction were obtained by recrystallizing the polycrystalline powder sample from an ethyl acetate/hexane solution.

Crystal data

	2
$C_{22}H_{16}N_{6}$	$D_x = 1.339 \text{ Mg m}^{-3}$
$M_r = 364.41$	Mo $K\alpha$ radiation
Monoclinic, $P2/n$	Cell parameters from 581
$a = 12.226 (4) \text{ Å}_{a}$	reflections
b = 5.8241 (19) Å	$\theta = 2.8 - 21.3^{\circ}$
c = 13.617 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 111.265 \ (6)^{\circ}$	T = 293 (2) K
$V = 903.6 (5) \text{ Å}^3$	Block, colorless
Z = 2	$0.32\times0.25\times0.18$ mm
Data collection	
Bruker APEXII CCD area-detector	1597 independent reflections
diffractometer	1121 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.066$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 14$

Refinement

 $T_{\min} = 0.919, T_{\max} = 1.000$

4795 measured reflections

5	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.0836P)^2]$
$wR(F^2) = 0.169$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
1597 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
127 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

 $k = -6 \rightarrow 6$

 $l = -16 \rightarrow 14$

All H atoms were placed in geometrically calculated positions, with C–H distances of 0.93 Å, and included in the final refinement in the riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

View of the molecular structure of (I), with the atom labeling and with 30% probability displacement ellipsoids (symmetry code: $\frac{1}{2} - x$, y, $\frac{3}{2} - z$).

Data collection: *APEXII* (Bruker, 2003); cell refinement: *APEXII* and *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20401012), the Key Project of Tianjin Natural Science Foundation (No. 043804111) and Tianjin Normal University.

References

Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garcia Vargas, M. & Valcarcel, M. (1978). An. Quim. 74, 901-904.
- Grases, F., Estela, J. M., Garcia-Sanchez, F. & Valcarcel, M. (1981). Analysis, 9, 66–69.
- Grases, F., Garcia-Sanchez, F. & Valcarcel, M. (1981). Anal. Chim. Acta, 125, 21–28.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Sumby, C. J. & Steel, P. J. (2005). New J. Chem. 29, 1077-1081.
- Valcarcel, M., Martinez, M. P. & Pino, F. (1975). Analyst, 100, 33-38.
- Valcarcel, M., Martinez, M. P. & Pino, F. (1977). Quim. Anal. 31, 75-80.