Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Xu-Dong Chen, ${ }^{\text {a }}$ Lin-Ping Zhang ${ }^{\text {b }}$ and Miao Du*

${ }^{\text {a College of Chemistry and Life Science, Tianjin }}$ Normal University, Tianjin 300074, People's
Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Donghua University, Shanghai 200051, People's Republic of China

Correspondence e-mail:
dumiao@public.tpt.tj.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.054$
$w R$ factor $=0.169$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Di-2-pyridyl ketone azine

In the crystal structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6}$, each molecule is disposed about a twofold axis perpendicular to the central $\mathrm{N}-\mathrm{N}$ single bond. The two pyridyl rings bound to the same C atom make a dihedral angle of $73.40(9)^{\circ}$. The linkage $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}$ torsion angle is -124.4 (2) .

## Comment

Di-2-pyridyl ketone azine, (I), has been long associated with the spectrometric determination of microamounts of metal ions such as $\mathrm{Cu}^{\mathrm{II}}$ (Grases, Estela et al., 1981), Au ${ }^{\text {III }}$ (Grases, Garcia-Sanchez \& Valcarcel, 1981), $\mathrm{Pd}^{\mathrm{II}}$ (Garcia Vargas \& Valcarcel, 1978), $\mathrm{Fe}^{\mathrm{II}}$ (Valcarcel et al., 1975), $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ (Valcarcel et al., 1977). A recent investigation of the coordination chemistry of this potential multidentate ligand suggests that (I) forms a discrete tetranuclear complex, (II), with $\mathrm{AgNO}_{3}$, while it decomposes on reaction with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (Sumby \& Steel, 2005). In the crystal structure of (II), there exist two discrete tetranuclear complexes within the asymmetric unit, each containing two molecules of ligand (I). As part of a further development of this project, we describe here the crystal structure of (I).

(I)

The title compound, (I), $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6}$, crystallizes in the monoclinic space group $P 2 / n$. The molecules of (I) are disposed about a twofold axis that is perpendicular to the central $\mathrm{N}-\mathrm{N}$ single bond. Viewed along the twofold axis, all four pyridyl rings in the molecule are twisted in the same direction, showing a clockwise or anticlockwise configuration. Similar observations have also been reported in the tetranuclear silver(I) coordination complex (II). On the other hand, the flexible conformation of (I) makes it a potential hexadentate ligand capable of coordination via all its nitrogen donors (Sumby \& Steel, 2005).

The geometry of the molecule of (I) differs from that of (II). The acute expression of the dihedral angle between the two pyridyl rings bonding to the same C atom is 73.40 (9) ${ }^{\circ}$ in (I), while the corresponding values in (II) range from 66.3 to $81.3^{\circ}$, with an average of $72.1^{\circ}$ (Sumby \& Steel, 2005). For the free

Received 9 December 2005 Accepted 13 December 2005 Online 21 December 2005
molecule of (I), the $\mathrm{C}-\mathrm{N}-\mathrm{N}-\mathrm{C}$ torsion angle is -124.4 (2) ${ }^{\circ}$, while the four ligand molecules in (II) have values of -138.0 (5), -149.4 (5), 138.3 (5) and 155.5 (5) ${ }^{\circ}$, respectively. The $\mathrm{N}-\mathrm{N}$ bond length at 1.371 (4) $\AA$ for the molecule in (I) is also significantly shorter than those in (II), being 1.399, 1.406, 1.409 and $1.380 \AA$. These differences indicate that the ligand molecule (I) takes a more open conformation in its silver(I) coordination complex (II). Further investigation of the crystal packing of (I) indicates that no significant intermolecular interactions, such as hydrogen-bonding and $\pi-\pi$ stacking, exist in this structure.

## Experimental

Compound (I) was prepared according to the literature procedure (Sumby \& Steel, 2005). Single crystals suitable for X-ray diffraction were obtained by recrystallizing the polycrystalline powder sample from an ethyl acetate/hexane solution.

## Crystal data

## $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{6}$

$M_{r}=364.41$
Monoclinic, $P 2 / n$
$a=12.226$ (4) A
$b=5.8241$ (19) $\AA$
$c=13.617$ (4) $\AA$
$\beta=111.265(6)^{\circ}$
$V=903.6(5) \AA^{3}$
$Z=2$

## Data collection

| Bruker APEXII CCD area-detector | 1597 independent reflections |
| :--- | :--- |
| $\quad$ diffractometer | 1121 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.066$ |
| Absorption correction: multi-scan | $\theta_{\max }=25.0^{\circ}$ |
| $\quad(S A D A B S ;$ Sheldrick, 1996) | $h=-12 \rightarrow 14$ |
| $T_{\min }=0.919, T_{\max }=1.000$ | $k=-6 \rightarrow 6$ |
| 4795 measured reflections | $l=-16 \rightarrow 14$ |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.169$
$S=1.16$
1597 reflections
127 parameters

$$
D_{x}=1.339 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 581 reflections
$\theta=2.8-21.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.32 \times 0.25 \times 0.18 \mathrm{~mm}$

1597 independent reflections
1121 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 14$
$k=-6 \rightarrow 6$
$l=-16 \rightarrow 14$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0836 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$

All H atoms were placed in geometrically calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and included in the final refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.


Figure 1
View of the molecular structure of (I), with the atom labeling and with $30 \%$ probability displacement ellipsoids (symmetry code: $\frac{1}{2}-x, y, \frac{3}{2}-z$ ).

Data collection: APEXII (Bruker, 2003); cell refinement: APEXII and SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20401012), the Key Project of Tianjin Natural Science Foundation (No. 043804111) and Tianjin Normal University.

## References

Bruker (2001). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). APEXII. Bruker AXS Inc., Madison, Wisconsin, USA.
Garcia Vargas, M. \& Valcarcel, M. (1978). An. Quim. 74, 901-904.
Grases, F., Estela, J. M., Garcia-Sanchez, F. \& Valcarcel, M. (1981). Analysis, 9, 66-69.
Grases, F., Garcia-Sanchez, F. \& Valcarcel, M. (1981). Anal. Chim. Acta, 125, 21-28.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sumby, C. J. \& Steel, P. J. (2005). New J. Chem. 29, 1077-1081.
Valcarcel, M., Martinez, M. P. \& Pino, F. (1975). Analyst, 100, 33-38.
Valcarcel, M., Martinez, M. P. \& Pino, F. (1977). Quim. Anal. 31, 75-80.


[^0]:    (C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

